Atmos. Chem. Phys. Discuss., 4, 7463–7485, 2004 www.atmos-chem-phys.org/acpd/4/7463/ SRef-ID: 1680-7375/acpd/2004-4-7463 © European Geosciences Union 2004

4, 7463-7485, 2004

Mixtures of organics and inorganics as CCN

S. Henning et al.

Title PageAbstractIntroductionConclusionsReferencesTablesFiguresI<</td>▶I▲▶IBackCloseFull Screen / EscPrint VersionInteractive Discussion

© EGU 2004

Cloud droplet activation and surface tension of mixtures of slightly soluble organics and inorganic salt

S. Henning¹, T. Rosenørn¹, B. D'Anna², A. A. Gola³, B. Svenningsson¹, and M. Bilde¹

 ¹Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
 ²Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
 ³Department of Physical Chemistry, Medical University of Wroclaw, pl. Nankiera 1, 50-140 Wroclaw, Poland

Received: 29 October 2004 - Accepted: 5 November 2004 - Published: 10 November 2004

Correspondence to: S. Henning (silvia@kl5.ki.ku.dk)

Abstract

Critical supersaturations for internally mixed particles of adipic acid, succinic acid and sodium chloride were determined experimentally for dry particles sizes in the range 40–130 nm. Surface tensions of aqueous solutions of the dicarboxylic acids and sodium

⁵ chloride corresponding to concentrations at activation were measured and parameterized as a function of carbon content. The activation of solid particles as well as solution droplets were studied and particle phase was found to be important for the critical supersaturation. Experimental data were modelled using Köhler theory modified to account for limited solubility and surface tension lowering.

10 1. Introduction

20

25

Atmospheric aerosols affect global climate directly via interaction with electromagnetic radiation (e.g. Andronova et al., 1999; Jacobson, 2001; Houghton et al., 2001) and indirectly via their role in cloud formation and importance for cloud droplet number and cloud optical properties (Albrecht, 1989; Hansen et al., 1997; Rosenfeld and Woodley, 2000; Lobmann, 2002; Lipport et al., 2004)

¹⁵ 2000; Lohmann, 2002; Liepert et al., 2004).

The ability of an aerosol particle to become a cloud droplet depends on the chemical composition and physical properties of the particle and only a fraction of all particles are able to grow into cloud droplets under atmospheric conditions. Aerosol particles that can grow into cloud droplets (activate) under atmospheric supersaturations are cloud condensation nuclei (CCN). The supersaturation needed to activate the particles is called critical supersaturation.

In the atmosphere particles may be solid or liquid, they may exist as solution droplets or even as multiphase systems (e.g. Prenni et al., 2001; Brooks et al., 2003; Marcolli et al., 2004). Furthermore, particles may go from one phase to the other during cloud processing. Recently it has been suggested and experimentally verified that particle phase plays a major role for the activation of particles consisting of slightly soluble

ACPD

4, 7463–7485, 2004

Mixtures of organics and inorganics as CCN

S. Henning et al.

Title Page		
Abstract	Introduction	
Conclusions References		
Tables	Tables Figures	
I4 >1		
•	►	
Back	Close	
Full Screen / Esc		
Print Version		
Interactive Discussion		

organic compounds (Bilde and Svenningsson, 2004; Hori et al., 2003; Broekhuizen et al., 2004). In the atmosphere particles are most likely to be mixtures of organic and inorganic components. Even if a purely organic particle exists it is likely to collect inorganic material during cloud processing. While some data on the cloud droplet

- ⁵ activation of pure (e.g. Cruz and Pandis, 1997; Corrigan and Novakov, 1999; Prenni et al., 2001; Raymond and Pandis, 2002; Kumar et al., 2003) and multi-component solid particles have recently appeared (e.g. Cruz and Pandis, 1998; Hegg et al., 2001; Raymond and Pandis, 2003; Kumar et al., 2003) few such data on multi-component solution droplets have been reported (Broekhuizen et al., 2004).
- ¹⁰ In this work the importance of particle phase for cloud droplet activation of multicomponent particles containing inorganic as well as organic compounds is therefore addressed. As representative of inorganic aerosol components the ubiquitous salt sodium chloride was chosen. As organic components adipic and succinic acid were chosen, which have been identified as common compounds in the water-soluble frac-
- tion of organic aerosols (Saxena and Hildemann, 1996). These acids are known to be moderately surface active and as discussed in recent papers (Facchini et al., 1999; Shulman et al., 1996) this can affect the critical supersaturation of atmospheric aerosol particles, but experimental data and parameterizations of relevant drop surface tensions are rare. Therefore surface tension measurements of the mixtures at relevant
- ²⁰ concentrations were conducted, parameterized as a function of the carbon content of the individual acids and incorporated in a Köhler model taking into account limited solubility. It has recently been suggested (Li et al., 1998; Sorjamaa et al., 2004) that partitioning of surface active organic compounds between bulk and surface in activating droplets affects the critical supersaturation. But this effect is expected to be strongest
- ²⁵ for highly surface active species and is therefore not taken into account herein.

ACPD

4, 7463-7485, 2004

Mixtures of organics and inorganics as CCN

S. Henning et al.

Title Page		
Abstract Introduction		
Conclusions References		
Tables	Figures	
Back	Close	
Back Full Scre		
	een / Esc	

2. Theory

5

Two competing effects determine the vapor pressure of water over an aqueous solution droplet: the solution effect (Raoult's law) which tends to decrease vapor pressure and the curvature (Kelvin) effect which tends to increase the vapor pressure. The vapor pressure of water over an aqueous solution droplet relative to that over a flat surface is given by the Köhler equation (Köhler, 1936):

$$S = \frac{\rho}{\rho_0} = a_{\rm w} \cdot \exp\left(\frac{4M_{\rm w}\sigma}{RT\rho_{\rm w}D_{\rm pw}}\right)$$

 a_w is the water activity, D_{pw} is droplet diameter, M_w is the molar weight of water, σ is the air-liquid surface tension, R is the gas constant, T is temperature and ρ_w is the density 10 of water. The Raoult term in classical Köhler theory applies only for completely soluble substances whereas recent modifications take limited solubility into account (Shulman et al., 1996; Kulmala et al., 1997; Laaksonen et al., 1998). For a droplet containing several species the water activity can be approximated by:

$$a_{\rm w} = \frac{n_{\rm w}}{n_{\rm w} + \sum_i v_i n_i} \tag{2}$$

 n_i is the number of moles of compound *i*, v_i is the van't Hoff factor and n_w number of moles water (Pruppacher and Klett, 1997).

By assuming that compound i is homogeneously distributed in the aqueous phase and that its concentration is determined by its water solubility only the number of moles of compound i in a multicomponent solution droplets can be expressed as:

$$n_{i} = \operatorname{Min}\left\{\frac{\left(D_{pw}^{3} - d_{0}^{3}\right) \cdot C_{sat}}{M_{i}}, \frac{\beta_{i} \cdot \rho_{0} \cdot d_{0}^{3}}{M_{i}}\right\} \cdot \frac{\pi}{6}$$
(3)

ACPD

4, 7463–7485, 2004

Mixtures of organics and inorganics as CCN

S. Henning et al.

(1)

where β_i is the mass fraction of compound *i* in the initial dry particle of diameter d_0 and C_{sat} is the water solubility of compound *i* (mass per volume). Assuming additivity of volumes the density of the dry particle ρ_0 is given as:

$$\frac{1}{\rho_0} = \sum_i \frac{\beta_i}{\rho_i} \tag{4}$$

⁵ Water solubilities of 25 gl⁻¹ and 88 gl⁻¹ were used for adipic and succinic acid, respectively (Saxena and Hildemann, 1996). A van't Hoff factor of 1 and 2 was used for organic acid (Kiss and Hansson, 2004) and NaCl, respectively.

As predicted by Shulman et al. (1996) the Köhler curve obtained using modified Köhler theory has up to three maxima (Fig. 1). The cusps represent the points where adipic and succinic acid respectively are completely dissolved. The maximum at the highest wet diameter represents a solution droplet were all components are dissolved. Therefore the corresponding supersaturation is identical with that obtained by assuming that the organic acids are infinitely soluble in water (classical Köhler theory). The supersaturations corresponding to the first two maxima may in some cases be higher theore the organic acids are infinitely soluble form traditional Köhler theory.

than the critical supersaturation obtained from traditional Köhler theory and as explained in Bilde and Svenningsson (2004) they can be viewed as an activation barrier which is due to the presence of a undissolved solid core of organic acid(s). This barrier is eliminated when the activating particle starts out as a solution droplet. The magnitude of the first two maxima may be dramatically influenced by the presence of small amounts of soluble material whereas the third maxima is less influenced.

3. Experimental

25

Aqueous solutions of two dicarboxylic acids (adipic acid, Riedel-de Haën, purity ≥99.8%; succinic acid, Merck, purity >99.5%) and sodium chloride (Riedel-de Haën, purity >99.8%) in three different proportions (mix. 1: 93% adipic acid (aa), 5% succinic acid (sa), 2% sodium chloride (NaCl); mix. 2: 80% aa, 18% sa, 2% NaCl; mix. 3: 5%

ACPD

4, 7463-7485, 2004

Mixtures of organics and inorganics as CCN

S. Henning et al.

Title Page		
Introduction		
References		
Figures		
►		
Close		
Full Screen / Esc		
Print Version		
Interactive Discussion		

aa, 93% sa, 2% NaCl) were prepared. To avoid impurities all glassware was cleaned with purified water (MilliQ) and all solutions were prepared with commercial available ultra pure water (Fluka, 7732-18-5).

- 3.1. Surface tension measurements
- 5 Surface tensions of the water-organic-inorganic salt systems were performed with the De Nöuy method (De Nöuy, 1919; Freud and Freud, 1930) over the temperature range 273-306 K.

The apparatus consists of a De Nöuy tensiometer (Krüss GmbH, Hamburg, Instrum. Nr. K6, type 90331), a Platinum-Iridium ring of radius r, and a glass vessel for the solutions. For measurement a Pt-ring is pulled through the liquid/air interface and the maximum downward force directed to the ring is measured. The surface tension is

$$\sigma = \frac{P}{4\pi r}F$$

determined by

where P is the detachment force and F is a dimensionless correction factor determined experimentally (Harkins and Jordan, 1930). The temperature was controlled to within ± 0.3 K either by a regulated stream of cold nitrogen through a double-walled beaker containing the mixtures or by a warm water bath.

The instrument was tested before every measurement serie using ionexchanged, doubly distillated water as standard. The result found for water $(72.49 \text{ mNm}^{-1} \pm 0.82 \text{ mNm}^{-1} \text{ at } 295 \text{ K})$ agrees well with the literature value 20 (72.75 mNm⁻¹ at 293 K, Vargaftik et al., 1983) and the temperature dependent parametrization given by Pruppacher and Klett (1997) (72.50 mNm⁻¹ at 295 K).

3.2. CCN-measurements

Aerosol particles were generated by atomizing aqueous solutions in a constant output atomizer (TSI, 3076) and their ability to act as cloud droplets was studied in a static

Abstract

Conclusions

(5)

© EGU 2004

ACPD

4, 7463-7485, 2004

Mixtures of organics and inorganics as CCN

S. Henning et al.

Title Page

Introduction

References

Figures

•

Close

thermal gradient diffusion chamber (CCNC, University of Wyoming, CCNC-100B). The number of activated particles is detected via light scattering. A similar CCNC and the calibration of it has been described in Delene and Deshler (2000).

The instruments supersaturation was calibrated using dry monodisperse NaCl and $(NH_4)_2SO_4$ particles over the supersaturation range of 0.2–2%. Theoretical values were calculated via Köhler Theory as described above. The resulting calibration equation (R^2 =0.9959) was applied to all experimental data.

Two types of experiments were performed: 1) dry measurements where the aerosol particles were dried before entering the cloud chamber and 2) wet measurements, where the particles entered the cloud chamber as solution droplets supersaturated in respect to the organics but subsaturated in respect to sodium chloride.

For the dry measurements (Fig. 2a) the generated aerosol was dried to relative humidities in the range 1–20% using diffusion dryers and a specific diameter was selected using a differential mobility analyzer (DMA, TSI, 3080). Particles generated in this way are referred to as initially dry particles. Downstream the DMA the CCNC was used to

determine the particles critical supersaturation. Particle number was measured as a reference with a particle counter (TSI, CPC 3010).

Studies of evaporation rates of adipic and succinic acid (Bilde et al., 2003) show that evaporation over the time scale particles spend in the tubing in these experiments is negligible. This was confirmed by comparing the particle size selected by the first DMA to their size just before entering the CCNC.

20

In the set-up for the wet measurements (Fig. 2b) the diffusion dryers were bypassed and the particles entered the DMA wet. The sheath air of the DMA was humidified to 70%. The monodisperse aerosol exiting the DMA was divided into two streams. One

stream was kept at the humidity of 70% until entering the cloud chamber. The other stream was dried and the dry particle size was measured using a scanning mobility particle analyzer (TSI, SMPS 3934) consisting of a DMA and a CPC.

Throughout this work the supersaturation in the CCNC was varied between 0.2 and 2% for a fixed dry or dry adequate particle diameter in dry and wet experiments, re-

4, 7463-7485, 2004

Mixtures of organics and inorganics as CCN

S. Henning et al.

Title Page			
Abstract Introduction			
Conclusions	References		
Tables	Figures		
•	•		
Back	Close		
Full Scr	Full Screen / Esc		
Print Version			
Interactive Discussion			

spectively. The activated particle fraction, the number of CCN normalized to the total particle number (CN), is ideally a step function. In reality the step is not always very steep (Fig. 3). By choosing a particle diameter via DMA technique a quasi monodisperse aerosol distribution is selected. The width of this distribution is dependent on the aerosol to sheath air flow ratio in the DMA and influences the slope in a plot of activated fraction versus supersaturation (e.g. Fig. 3). This was considered by fitting the data to a function taking the DMA transfer function into account. The critical supersaturation is

the point of 50% activation.

4. Results and discussion

- ¹⁰ Three different mixtures containing adipic acid, succinic acid and sodium chloride were investigated with respect to surface tension and activation behavior. The mass fraction of the inorganic salt was kept at 2% and the relative amounts of adipic and succinic acid were varied.
 - 4.1. Surface tension of mixtures
- To investigate surface tensions in the relevant concentration range, drop concentrations at activation were estimated using Köhler theory accounting for limited solubility. Surface tension measurements were performed using solutions corresponding roughly to the concentrations at activation of initially dry particles with diameters of 40, 50 and 100 nm. The exact concentrations studied are given in Table A1.
- ²⁰ A linear temperature dependence was found for all three mass mixing ratios of adipic acid, succinic acid and NaCl with water (Fig. 4). Slopes, offsets and errors of the linear least square fits are given in Fig. 4.

In Fig. 4a the solute concentration is very close to the solubility limit of adipic acid for the studied solutions and the surface tension is therefore similar for both solutions.

²⁵ Pure adipic acid is found to be more surface active than pure succinic acid (Shulman

4, 7463–7485, 2004

Mixtures of organics and inorganics as CCN

S. Henning et al.

Title Page		
Abstract Introduction		
Conclusions References		
Tables	Figures	
•	•	
Back	Close	
Full Screen / Esc		
Print Version		
Interactive Discussion		

et al., 1996; Dash and Mohanty, 1997) and consistently a stronger surface tension lowering is observed with increasing adipic acid concentration in the solution.

According to Facchini et al. (1999) surface tension lowering of atmospheric water samples can be described by the Szyszkowski-Langmuir equation:

$$\sigma = \sigma_w(T) - aT \ln(1 + bC)$$

10

where C is the concentration of soluble carbon given in moles of carbon per kg of water. Applying Eq. (6) to multiple mixtures, it is required that the coefficients a and b are determined from experimental data for all mixing ratios investigated. A modification of this equation has been tested and proven successful for all mixtures studied herein.

$$\sigma = \sigma_{\rm w}(T) - \sum_{i} \chi_i a_i T \ln(1 + b_i C) \tag{7}$$

Equation (7) allows calculation of the surface tension of mixtures at the temperature T on the basis of the coefficients a_i , b_i for the pure compounds fulfilling Eq. (6) and χ_i , the carbon content of compound *i* (C_i in moles of carbon per kg of water) in respect to the total soluble carbon C in solution:

15
$$\chi_i = \frac{C_i}{C}$$

Recently Kiss et al. (2004) have shown that high concentrations of inorganic salts can enhance surface tension lowering of HULIS. Due low inorganic salt concentrations of the here investigated mixtures this effect was assumed to be negligible.

Values for a_i and b_i of pure adipic acid were derived by fitting Eq. (6) to data points ²⁰ given by Shulman et al. (1996) (Table 1). Fitting coefficients for pure succinic acid are taken from Svenningsson et al. (2004)¹.

¹Svenningsson, B., Rissler, J., Swietlicki, E., Mircea, M., Bilde, M., Facchini, M. C., Decesari, S., Fuzzi, S., Zhou, J., Mønster, J., and Rosenørn, T.: Hygroscopic Growth and Critical Supersaturations for Mixed Aerosol Particles of Inorganic and Organic Compounds of Atmospheric Relevance, to be submitted, 2004. ACPD

4, 7463–7485, 2004

Mixtures of organics and inorganics as CCN

(6)

(8)

S. Henning et al.

Title	Title Page		
Abstract	Abstract Introduction		
Conclusions	References		
Tables	Figures		
14			
•			
•	•		
Back	Close		
Full Sci	Full Screen / Esc		
Print	Print Version		
Interactive	Interactive Discussion		

Predicting surface tensions for the experimentally investigated solutions applying this approach leads to a good agreement (Fig. 5, $R^2 = 0.956$) in the here considered temperature (273 K $\leq T \leq$ 306 K) and concentration range (0.25 mol kg⁻¹ $\leq [C] \leq$ 3.06 mol kg⁻¹). In general, mixtures close to the solubility limit were difficult to measure due to beginning precipitation. The precipitated compounds were resolvated by heating the solution, fol-

⁵ precipitation. The precipitated compounds were resolvated by heating the solution, followed by cooling and immediate surface tension measurement. This procedure might explain the deviation from the 1:1 line in Fig. 5 for low surface tensions.

More work is needed to show if Eq. (7) is applicable for other organic compounds and for higher concentration of inorganic material.

10 4.2. Cloud droplet activation

Critical supersaturations for initially dry particles were in the range between 1.3% (60 nm, highest share of slightly soluble organics) and 0.16% (110 nm, lowest share of slightly soluble organics, Fig. 6) For solution droplets the critical supersaturation was in general lower and the difference between the mixtures was not as strong. The experimental values range between about 1% supersaturation (40 nm) and 0.18% (130 nm).

To activate the initially dry particles here investigated the critical supersaturation has to be considerately higher than for e.g. pure sodium chloride particles of the same size. In comparison with a pure salt particle of 60 nm, which requires a supersaturation of 0.22% to activate, the critical supersaturation has to be $6\times$, $4\times$ and $2\times$ as high for the studied initially dry particles, respectively (in order of decreasing share of adipic acid in the particle).

The mixed particles exhibit a significant difference in required supersaturation between initial dry particles (when a solid core is present) and solution droplets and the difference gets stronger with increasing mass fraction of the less soluble organic acid.

²⁵ The solution droplets, obtained via the wet set-up (Fig. 2b), do not have to overcome the above described solubility barriers and can therefore easier activate than the dry particles.

The experimentally determined critical supersaturation values (Fig. 6: $S_{c,exp}$ dry/wet)

4, 7463-7485, 2004

Mixtures of organics and inorganics as CCN

S. Henning et al.

Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
• •		
Back	Close	
Full Screen / Esc		
Print Version		
Interactive Discussion		

were on one hand compared to theoretical values obtained by neglecting the surface tension lowering (Fig. 6: $S_{c,theo}$ dry/wet, $\sigma_w(T)$) and on the other hand to a Köhler theory applying the solutions surface tension calculated at activation via the parametrization explained above (Fig. 6: $S_{c,theo}$ dry/wet, $\sigma(T, C)$). Both theories take limited solubility into account.

For wet particles measured values and theory taking the parameterized surface tension of the solution into account agree very well for all mixture types. In case of dry particles another effect seems to dominate the lowering of surface tension and the particles activate at a higher critical supersaturation than predicted.

However, in mixtures with a high share of adipic acid the difference between the theories applying more and less realistic surface tensions pales in comparison with the difference between the wet and dry activation state. E.g. for a 60 nm particle consisting of 93% adipic acid, 5% succinic acid, 2% sodium chloride the deviation between the difference surface tension approaches is 18% and 13% for a dry and wet particle,
 respectively, while there is a 43% discrepancy between initial dry and wet particles. An equal sized particle containing 5% adipic acid, 93% succinic acid, 2% sodium chloride activates at the same supersaturation in wet and dry state, whereas the difference in surface tension accounts for 3% difference in critical supersaturation.

5. Conclusions

²⁰ Surface tensions of mixtures of two slightly soluble organic acids and an inorganic salt were measured and parameterized as a function of carbon content of the individual acids and temperature. It was found that the actual surface tension of the droplet at activation is dependent on the mole fraction of both acids.

Including surface tension lowering in Köhler theory taking limited solubility into account describes the activation behavior of the solution droplets well, but when a solid core is present theory underestimates critical supersaturation.

Even more crucial than surface tension for the here studied mixtures is the phase

ACPD 4, 7463-7485, 2004 **Mixtures of organics** and inorganics as CCN S. Henning et al. **Title Page** Introduction Abstract Conclusions References Figures Tables Back Close Full Screen / Esc Print Version Interactive Discussion © EGU 2004

state of the particles. It was shown above that dry particles need much higher supersaturation to activate than their wet solution droplet counterpart. Knowledge of the phase state is therefore crucial otherwise an error in critical supersaturation of more than 50% can be made and thereby in predicting the CCN number.

5 Acknowledgements. This work is supported by the Swiss National Science Foundation, the Danish Natural Science Research Council and the Nordic Center of Excellence, Research Unit BACCI.

References

Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227-

- 10 **1230, 1989. 7464**
 - Andronova, N. G., Rozanov, E. V., Yang, F. L., Schlesinger, M. E., and Stenchikov, G. L.: Radiative forcing by volcanic aerosols from 1850 to 1994, J. Geophys. Res., 104, 16807– 16826, 1999. 7464

Bilde, M. and Svenningsson, B.: CCN activation of slightly soluble organics: Importance of

small amounts of inorganic salt and particle phase, Tellus, 56B, 128–134, 2004. 7465, 7467
 Bilde, M., Svenningsson, B., Mønster, J., and Rosenørn, T.: Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols, Environ. Sci. Technol., 37, 1371–1378, 2003. 7469

Broekhuizen, K., Kumar, P. P., and Abbatt, J. P. D.: Partially soluble organics as cloud con-

- densation nuclei: Role of trace soluble and surface active species, Geophys. Res. Lett., 31, L01 107, doi:10.1029/2003GL018203, 2004. 7465
 - Brooks, S. D., Garland, R. M., Wise, M. E., Prenni, A. J., Cushing, M., Hewitt, E., and Tolbert, M. A.: Phase changes in internally mixed maleic acid/ammonium sulfate aerosols, J. Geophys. Res., 108, 4487, doi:10.1029/2002JD003204, 2003. 7464
- ²⁵ Corrigan, C. E. and Novakov, T.: Cloud condensation nucleus activity of organic compounds: a laboratory study, Atmos. Envir., 33, 2661–2668, 1999. 7465
 - Cruz, C. N. and Pandis, S. N.: A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei, Atmos. Envir., 31, 2205–2214, 1997. 7465

Cruz, C. N. and Pandis, S. N.: The effect of organic coatings on the cloud condensation nuclei

4, 7463–7485, 2004

Mixtures of organics and inorganics as CCN

S. Henning et al.

Title Page		
Abstract Introduction		
Conclusions References		
Tables	Figures	
Back	Close	
Full Screen / Esc		
Print V	ersion	

activation of inorganic atmospheric aerosol, J. Geophys. Res., 103, 13111-13123, 1998. 7465

Dash, U. N. and Mohanty, B. K.: Thermodynamic functions of solutions of homologous dicarboxylic acids in water plus acetone mixtures from surface tension measurements, Fluid Phase Equilibria, 134, 267–276, 1997. 7471

5

- De Nöuy, P. L.: A new apparatus for measuring surface tension, J. Gen. Physiology, 1, 521–524, 1919. 7468
- Delene, D. J. and Deshler, T.: Calibration of a photometric cloud condensation nucleus counter
- designed for deployment on a balloon package, J. Atmosp. Oc., 17, 459–467, 2000. 7469
 Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J.: Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nature, 401, 257–259, 1999. 7465, 7471
 Freud, B. B. and Freud, H. Z.: A theory of the ring method for the determination of surface tension, J. Am. Chem. Soc., 52, 1772–1782, 1930. 7468
- ¹⁵ Hansen, J., Sato, M., and Ruedy, R.: Radiative Forcing and Climate Response, J. Geophys. Res., 102, 6831–6864, 1997. 7464
 - Harkins, W. D. and Jordan, H. F.: A method for the determination of surface tension from the maximum pull on a ring, J. Am. Chem. Soc., 52, 1751–1772, 1930. 7468
 - Hegg, D. A., Gao, S., Hoppel, W., Frick, G., Caffrey, P., Leaitch, W. R., Shantz, N., Ambrusko,
- J., and Albrechcinski, T.: Laboratory studies of the efficiency of selected organic aerosols as CCN, Atmos. Res., 58, 155–166, 2001. 7465
 - Hori, M., Ohta, S., Murao, N., and Yamagata, S.: Activation capability of water soluble organic substances as CCN, J. Aerosol Sci., 34, 419–448, 2003. 7465
 - Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C.: Climate Change 2001: The Scientific Basis. Contribution of Working Group
- and Johnson, C.: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovermental Panel on Climate Change, IPCC, 2001. 7464
 - Jacobson, M. Z.: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695–697, 2001. 7464
- ³⁰ Kiss, G. and Hansson, H. C.: Application of osmolality for the determination of water activity and the modelling of cloud formation, Atmos. Chem. Phys. Discuss., accepted, 2004. 7467 Kiss, G., Tombácz, E., and Hansson, H. C.: Surface tension effects of humic-like substances in the aqueous extract of tropospheric fine aerosol, J. Atmos. Chem., accepted, 2004. 7471 Köhler, H.: The nucleus in and the growth of hygropscopic droplets, Trans. Faraday Soc., 32,

inorg	•	
CC	N	

ACPD

S. Henning et al.

Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	s Figures	
	►I	
•	•	
Back	Close	
Full Screen / Esc		
Print Version		
Interactive Discussion		

1936. 7466

- Kulmala, M., Laaksonen, A., Charlson, R. J., and Korhonen, P.: Clouds without supersaturation, Nature, 388, 336–337, 1997. 7466
- Kumar, P. P., Broekhuizen, K., and Abbatt, J. P. D.: Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble species, Atmos. Chem. Phys., 3, 509–520, 2003,

SRef-ID: 1680-7324/acp/2003-3-509. 7465

- Laaksonen, A., Korhonen, P., Kulmala, M., and Charlson, R. J.: Modification of the Köhler equation to include soluble trace gases and slightly soluble substances, J. Atmos. Sci., 55, 853–862, 1998. 7466
 - Li, Z. D., Williams, A. L., and Rood, M. J.: Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute, J. Atmos. Sci., 55, 1859–1866, 1998. 7465
- Liepert, B. G., Feichter, J., Lohmann, U., and Roeckner, E.: Can Aerosols Spin Down the Water Cycle in a Warmer and Moister World?, Geophys. Res. Lett., 31, L06207, doi:10.1029/2003GL019060, 2004. 7464
 - Lohmann, U.: A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols, Geophys. Res. Lett., 29, 1052, doi:10.1029/2001GL014357, 2002. 7464
- ²⁰ Marcolli, C., Luo, B. P., and Peter, T.: Mixing of the organic aerosol fractions: Liquids as the thermodynamically stable phases, J. Phys. Chem., 108, 2216–2224, 2004. 7464
 - Prenni, A. J., DeMott, P. J., Kreidenweis, S. M., Sherman, D. E., Russell, L. M., and Ming, Y.: The effects of low molecular weight dicarboxylic acids on cloud formation, J. Phys. Chem., 105, 11 240–11 248, 2001. 7464, 7465
- Pruppacher, H. R. and Klett, J. D.: Microphysics of clouds and precipitation, Kluwer Academic Publishers, Dordrecht, 2 edn., 1997. 7466, 7468
 - Raymond, T. M. and Pandis, S. N.: Cloud activation of single-component organic aerosol particles, J. Geophys. Res., 107, 4787, doi:10.1029/2002JD002159, 2002. 7465

Raymond, T. M. and Pandis, S. N.: Formation of cloud droplets by multicomponent organic

- ³⁰ particles, J. Geophys. Res., 108, 4469, doi:10.1029/2003JD003503, 2003. 7465 Rosenfeld, D. and Woodley, W. L.: Deep Convective Clouds With Sustained Supercooled Liquid
 - Water Down to -37.5 Degrees C, Nature, 405, 440-442, 2000. 7464
 - Saxena, P. and Hildemann, L. M.: Water-Soluble Organics in Atmospheric Particles: a Critical Review of the Literature and Application of Thermodynamics to Identify Candidate Com-

4, 7463–7485, 2004

Mixtures of organics and inorganics as CCN

S. Henning et al.

Title Page		
Abstract Introduction		
Conclusions References		
Tables	Figures	
• •		
Back	Close	
Full Scre	en / Esc	
Full Scre		

pounds, J. Atmos. Chem., 24, 57–109, 1996. 7465, 7467

- Shulman, M. L., Jacobson, M. C., Charlson, R. J., Synovec, R. E., and Young, T. E.: Dissolution Behavior and Surface Tension Effects of Organic Compounds in Nucleating Cloud Droplets,
- Geophys. Res. Lett., 23, 277–280, 1996. 7465, 7466, 7467, 7470, 7471
 Sorjamaa, R., Raatikainen, T., and Laaksonen, A.: The role of surfactants in Köhler theory
 - reconsidered, Atmos. Chem. Phys., 4, 2107–2117, 2004, SRef-ID: 1680-7324/acp/2004-4-2107. 7465
 - Vargaftik, N. B., Volkov, B. N., and Voljak, L. D.: International Tables of the Surface-Tension of Water, J. Phys. Chem. Ref. Data, 12, 817–820, 1983. 7468

ACPD

4, 7463-7485, 2004

Mixtures of organics and inorganics as CCN

S. Henning et al.

Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
•	•	
Back	Close	
Full Screen / Esc		
Print Version		
Interactive Discussion		

4, 7463–7485, 2004

Mixtures of organics and inorganics as CCN

S. Henning et al.

Title Page					
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
	▶				
•	•				
Back	Close				
Full Screen / Esc					
Print Version					
Interactive Discussion					

© EGU 2004

Table 1. Coefficients a_i and b_j of pure adipic acid and succinic acid derived by fitting Eq. (6) to N data points.

compound	Ν	<i>a</i> _i	b _i
succinic acid	6	0.0264	0.286
adipic acid	4	0.0106	11.836

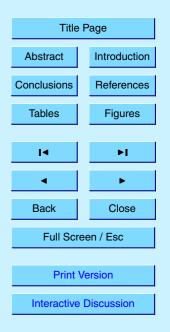
4, 7463-7485, 2004

Mixtures of organics and inorganics as CCN

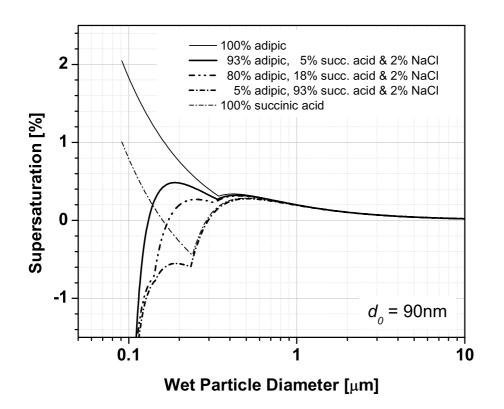
S. Henning et al.

Title Page					
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
I	►I				
•	•				
Back	Close				
Full Screen / Esc					
Print Version					
Interactive Discussion					

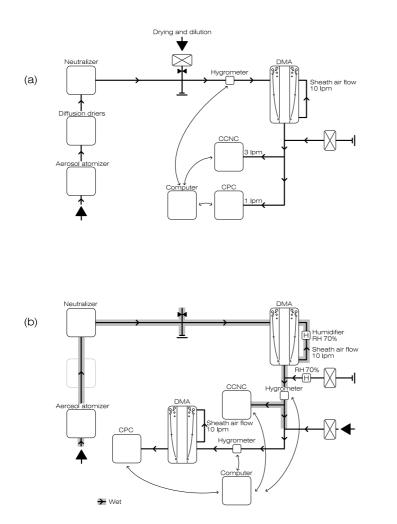
© EGU 2004


Table A1. Mass of adipic acid (aa), succinic acid (sa), sodium chloride (NaCl) and water in each individual solution used for surface tension measurements. Concentrations correspond roughly to the point of activation of initially dry particles at different dry diameters d_0 .

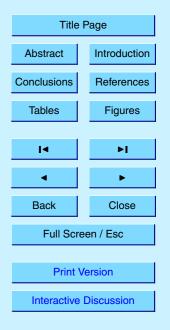
d ₀ nm	m _{aa} g	m _{sa} g	m _{NaCl} g	m _{water} g			
	93% aa, 5% sa, 2% NaCl						
100	2.257	0.674	0.271	96.954			
50	2.016	1.337	0.535	96.129			
80% aa, 18% sa, 2% NaC							
100	0.770	0.175	0.019	99.038			
50	2.192	2.393	0.264	95.305			
5% aa, 93% sa, 2% NaCl							
100	0.036	0.674	0.015	99.294			
50	0.106	1.860	0.040	98.005			
40	1.742	6.135	0.947	91.219			


4, 7463-7485, 2004

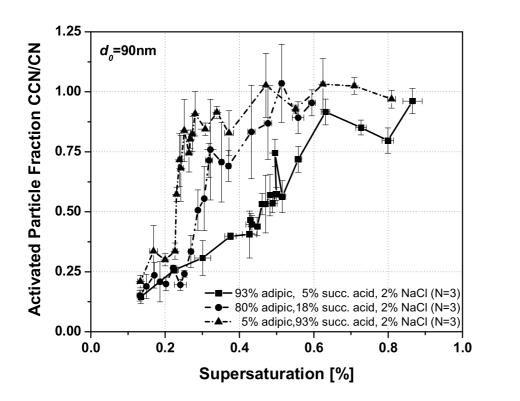
Mixtures of organics and inorganics as CCN


S. Henning et al.

© EGU 2004


Fig. 1. Köhler curves accounting for limited solubility for initially dry particles with a diameter of 90 nm of ternary mixtures of adipic and succinic acid and sodium chloride. For comparison the curves for pure adipic and succinic acid are also given.

4, 7463-7485, 2004


Mixtures of organics and inorganics as CCN

S. Henning et al.

© EGU 2004

Fig. 2. Experimental setup of CCNC measurements for **(a)** initially dry particles and **(b)** solution droplets. In (b) the grey highlighted lines show the pathway of the wet kept particles.

4, 7463-7485, 2004

Mixtures of organics and inorganics as CCN

S. Henning et al.

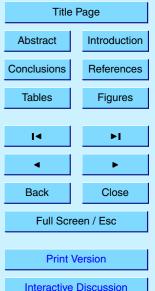
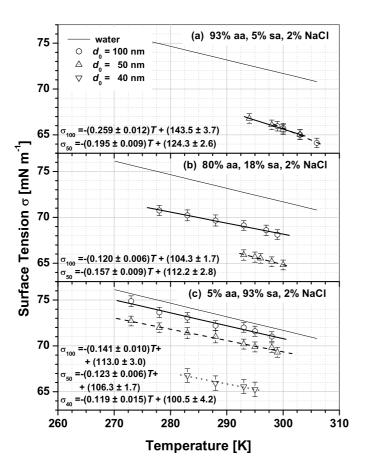
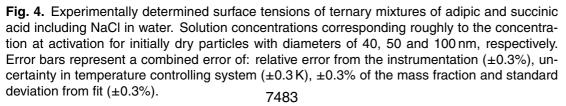
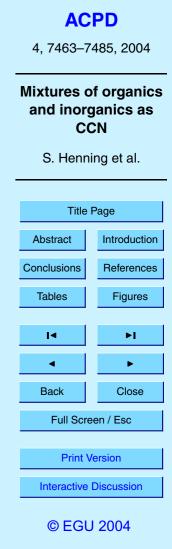
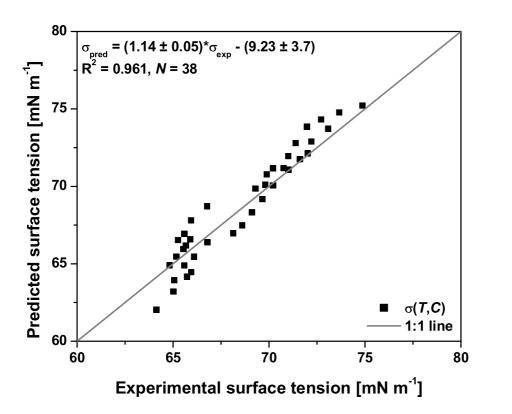
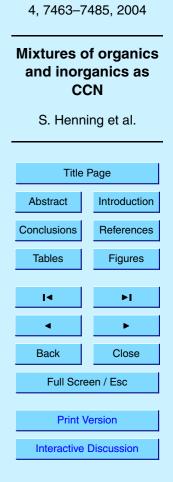
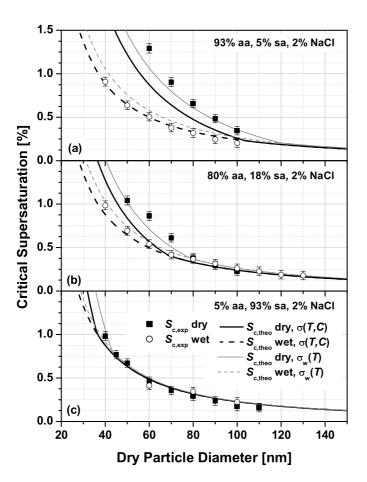






Fig. 3. Example of activation measurements for ternary mixtures of adipic and succinic acid at a dry particle diameter d_0 =90 nm. N is the number of scans included in the average and the bars give the standard deviation of the measurements.





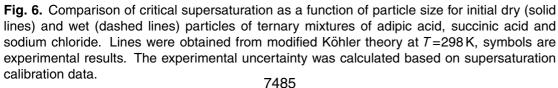


Fig. 5. Predicted surface tensions of mixtures containing dicarboxylic acids and sodium chloride using Eq. (7) versus experimental derived surface tensions in a temperature range of $273 \text{ K} \le T \le 306 \text{ K}$ and a total soluble carbon concentration in water of $0.25 \text{ mol kg}^{-1} \le [C] \le 3.06 \text{ mol kg}^{-1}$.

ACPD 4, 7463-7485, 2004 **Mixtures of organics** and inorganics as CCN S. Henning et al. **Title Page** Abstract Introduction Conclusions References Figures Tables ► Close Back Full Screen / Esc **Print Version** Interactive Discussion