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Abstract

Critical supersaturations for internally mixed particles of adipic acid, succinic acid and
sodium chloride were determined experimentally for dry particles sizes in the range 40–
130 nm. Surface tensions of aqueous solutions of the dicarboxylic acids and sodium
chloride corresponding to concentrations at activation were measured and parame-5

terized as a function of carbon content. The activation of solid particles as well as
solution droplets were studied and particle phase was found to be important for the
critical supersaturation. Experimental data were modelled using Köhler theory modi-
fied to account for limited solubility and surface tension lowering.

1. Introduction10

Atmospheric aerosols affect global climate directly via interaction with electromagnetic
radiation (e.g. Andronova et al., 1999; Jacobson, 2001; Houghton et al., 2001) and
indirectly via their role in cloud formation and importance for cloud droplet number and
cloud optical properties (Albrecht, 1989; Hansen et al., 1997; Rosenfeld and Woodley,
2000; Lohmann, 2002; Liepert et al., 2004).15

The ability of an aerosol particle to become a cloud droplet depends on the chemical
composition and physical properties of the particle and only a fraction of all particles
are able to grow into cloud droplets under atmospheric conditions. Aerosol particles
that can grow into cloud droplets (activate) under atmospheric supersaturations are
cloud condensation nuclei (CCN). The supersaturation needed to activate the particles20

is called critical supersaturation.
In the atmosphere particles may be solid or liquid, they may exist as solution droplets

or even as multiphase systems (e.g. Prenni et al., 2001; Brooks et al., 2003; Marcolli
et al., 2004). Furthermore, particles may go from one phase to the other during cloud
processing. Recently it has been suggested and experimentally verified that particle25

phase plays a major role for the activation of particles consisting of slightly soluble
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organic compounds (Bilde and Svenningsson, 2004; Hori et al., 2003; Broekhuizen
et al., 2004). In the atmosphere particles are most likely to be mixtures of organic
and inorganic components. Even if a purely organic particle exists it is likely to collect
inorganic material during cloud processing. While some data on the cloud droplet
activation of pure (e.g. Cruz and Pandis, 1997; Corrigan and Novakov, 1999; Prenni5

et al., 2001; Raymond and Pandis, 2002; Kumar et al., 2003) and multi-component
solid particles have recently appeared (e.g. Cruz and Pandis, 1998; Hegg et al., 2001;
Raymond and Pandis, 2003; Kumar et al., 2003) few such data on multi-component
solution droplets have been reported (Broekhuizen et al., 2004).

In this work the importance of particle phase for cloud droplet activation of multi-10

component particles containing inorganic as well as organic compounds is therefore
addressed. As representative of inorganic aerosol components the ubiquitous salt
sodium chloride was chosen. As organic components adipic and succinic acid were
chosen, which have been identified as common compounds in the water-soluble frac-
tion of organic aerosols (Saxena and Hildemann, 1996). These acids are known to15

be moderately surface active and as discussed in recent papers (Facchini et al., 1999;
Shulman et al., 1996) this can affect the critical supersaturation of atmospheric aerosol
particles, but experimental data and parameterizations of relevant drop surface ten-
sions are rare. Therefore surface tension measurements of the mixtures at relevant
concentrations were conducted, parameterized as a function of the carbon content20

of the individual acids and incorporated in a Köhler model taking into account limited
solubility. It has recently been suggested (Li et al., 1998; Sorjamaa et al., 2004) that
partitioning of surface active organic compounds between bulk and surface in activating
droplets affects the critical supersaturation. But this effect is expected to be strongest
for highly surface active species and is therefore not taken into account herein.25
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2. Theory

Two competing effects determine the vapor pressure of water over an aqueous solution
droplet: the solution effect (Raoult’s law) which tends to decrease vapor pressure and
the curvature (Kelvin) effect which tends to increase the vapor pressure. The vapor
pressure of water over an aqueous solution droplet relative to that over a flat surface is5

given by the Köhler equation (Köhler, 1936):

S =
p
p0

= aw · exp

(
4Mwσ

RTρwDpw

)
(1)

aw is the water activity, Dpw is droplet diameter, Mw is the molar weight of water, σ is the
air-liquid surface tension, R is the gas constant, T is temperature and ρw is the density
of water. The Raoult term in classical Köhler theory applies only for completely soluble10

substances whereas recent modifications take limited solubility into account (Shulman
et al., 1996; Kulmala et al., 1997; Laaksonen et al., 1998). For a droplet containing
several species the water activity can be approximated by:

aw =
nw

nw +
∑

i νini
(2)

ni is the number of moles of compound i , νi is the van’t Hoff factor and nw number of15

moles water (Pruppacher and Klett, 1997).
By assuming that compound i is homogeneously distributed in the aqueous phase

and that its concentration is determined by its water solubility only the number of moles
of compound i in a multicomponent solution droplets can be expressed as:

ni = Min


(
D3

pw − d3
0

)
· Csat

Mi
,
βi · ρ0 · d

3
0

Mi

 · π
6

(3)

20
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where βi is the mass fraction of compound i in the initial dry particle of diameter d0
and Csat is the water solubility of compound i (mass per volume). Assuming additivity
of volumes the density of the dry particle ρ0 is given as:

1
ρ0

=
∑
i

βi

ρi
(4)

Water solubilities of 25 gl−1 and 88 gl−1 were used for adipic and succinic acid, re-5

spectively (Saxena and Hildemann, 1996). A van’t Hoff factor of 1 and 2 was used for
organic acid (Kiss and Hansson, 2004) and NaCl, respectively.

As predicted by Shulman et al. (1996) the Köhler curve obtained using modified
Köhler theory has up to three maxima (Fig. 1). The cusps represent the points where
adipic and succinic acid respectively are completely dissolved. The maximum at the10

highest wet diameter represents a solution droplet were all components are dissolved.
Therefore the corresponding supersaturation is identical with that obtained by assum-
ing that the organic acids are infinitely soluble in water (classical Köhler theory). The
supersaturations corresponding to the first two maxima may in some cases be higher
than the critical supersaturation obtained from traditional Köhler theory and as ex-15

plained in Bilde and Svenningsson (2004) they can be viewed as an activation barrier
which is due to the presence of a undissolved solid core of organic acid(s). This barrier
is eliminated when the activating particle starts out as a solution droplet. The magni-
tude of the first two maxima may be dramatically influenced by the presence of small
amounts of soluble material whereas the third maxima is less influenced.20

3. Experimental

Aqueous solutions of two dicarboxylic acids (adipic acid, Riedel-de Haën, purity
>99.8%; succinic acid, Merck, purity >99.5%) and sodium chloride (Riedel-de Haën,
purity >99.8%) in three different proportions (mix. 1: 93% adipic acid (aa), 5% succinic
acid (sa), 2% sodium chloride (NaCl); mix. 2: 80% aa, 18% sa, 2% NaCl; mix. 3: 5%25
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aa, 93% sa, 2% NaCl) were prepared. To avoid impurities all glassware was cleaned
with purified water (MilliQ) and all solutions were prepared with commercial available
ultra pure water (Fluka, 7732-18-5).

3.1. Surface tension measurements

Surface tensions of the water-organic-inorganic salt systems were performed with the5

De Nöuy method (De Nöuy, 1919; Freud and Freud, 1930) over the temperature range
273–306 K.

The apparatus consists of a De Nöuy tensiometer (Krüss GmbH, Hamburg, Instrum.
Nr. K6, type 90331), a Platinum-Iridium ring of radius r , and a glass vessel for the
solutions. For measurement a Pt-ring is pulled through the liquid/air interface and the10

maximum downward force directed to the ring is measured. The surface tension is
determined by

σ =
P

4πr
F (5)

where P is the detachment force and F is a dimensionless correction factor determined
experimentally (Harkins and Jordan, 1930). The temperature was controlled to within15

±0.3 K either by a regulated stream of cold nitrogen through a double-walled beaker
containing the mixtures or by a warm water bath.

The instrument was tested before every measurement serie using ion-
exchanged, doubly distillated water as standard. The result found for wa-
ter (72.49 mNm−1±0.82 mNm−1 at 295 K) agrees well with the literature value20

(72.75 mNm−1 at 293 K, Vargaftik et al., 1983) and the temperature dependent
parametrization given by Pruppacher and Klett (1997) (72.50 mNm−1 at 295 K).

3.2. CCN-measurements

Aerosol particles were generated by atomizing aqueous solutions in a constant output
atomizer (TSI, 3076) and their ability to act as cloud droplets was studied in a static25
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thermal gradient diffusion chamber (CCNC, University of Wyoming, CCNC-100B). The
number of activated particles is detected via light scattering. A similar CCNC and the
calibration of it has been described in Delene and Deshler (2000).

The instruments supersaturation was calibrated using dry monodisperse NaCl and
(NH4)2SO4 particles over the supersaturation range of 0.2–2%. Theoretical values5

were calculated via Köhler Theory as described above. The resulting calibration equa-
tion (R2=0.9959) was applied to all experimental data.

Two types of experiments were performed: 1) dry measurements where the aerosol
particles were dried before entering the cloud chamber and 2) wet measurements,
where the particles entered the cloud chamber as solution droplets supersaturated in10

respect to the organics but subsaturated in respect to sodium chloride.
For the dry measurements (Fig. 2a) the generated aerosol was dried to relative hu-

midities in the range 1–20% using diffusion dryers and a specific diameter was selected
using a differential mobility analyzer (DMA, TSI, 3080). Particles generated in this way
are referred to as initially dry particles. Downstream the DMA the CCNC was used to15

determine the particles critical supersaturation. Particle number was measured as a
reference with a particle counter (TSI, CPC 3010).

Studies of evaporation rates of adipic and succinic acid (Bilde et al., 2003) show that
evaporation over the time scale particles spend in the tubing in these experiments is
negligible. This was confirmed by comparing the particle size selected by the first DMA20

to their size just before entering the CCNC.
In the set-up for the wet measurements (Fig. 2b) the diffusion dryers were bypassed

and the particles entered the DMA wet. The sheath air of the DMA was humidified to
70%. The monodisperse aerosol exiting the DMA was divided into two streams. One
stream was kept at the humidity of 70% until entering the cloud chamber. The other25

stream was dried and the dry particle size was measured using a scanning mobility
particle analyzer (TSI, SMPS 3934) consisting of a DMA and a CPC.

Throughout this work the supersaturation in the CCNC was varied between 0.2 and
2% for a fixed dry or dry adequate particle diameter in dry and wet experiments, re-
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spectively. The activated particle fraction, the number of CCN normalized to the total
particle number (CN), is ideally a step function. In reality the step is not always very
steep (Fig. 3). By choosing a particle diameter via DMA technique a quasi monodis-
perse aerosol distribution is selected. The width of this distribution is dependent on the
aerosol to sheath air flow ratio in the DMA and influences the slope in a plot of activated5

fraction versus supersaturation (e.g. Fig. 3). This was considered by fitting the data to
a function taking the DMA transfer function into account. The critical supersaturation is
the point of 50% activation.

4. Results and discussion

Three different mixtures containing adipic acid, succinic acid and sodium chloride were10

investigated with respect to surface tension and activation behavior. The mass fraction
of the inorganic salt was kept at 2% and the relative amounts of adipic and succinic
acid were varied.

4.1. Surface tension of mixtures

To investigate surface tensions in the relevant concentration range, drop concentra-15

tions at activation were estimated using Köhler theory accounting for limited solubility.
Surface tension measurements were performed using solutions corresponding roughly
to the concentrations at activation of initially dry particles with diameters of 40, 50 and
100 nm. The exact concentrations studied are given in Table A1.

A linear temperature dependence was found for all three mass mixing ratios of adipic20

acid, succinic acid and NaCl with water (Fig. 4). Slopes, offsets and errors of the linear
least square fits are given in Fig. 4.

In Fig. 4a the solute concentration is very close to the solubility limit of adipic acid for
the studied solutions and the surface tension is therefore similar for both solutions.

Pure adipic acid is found to be more surface active than pure succinic acid (Shulman25
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et al., 1996; Dash and Mohanty, 1997) and consistently a stronger surface tension
lowering is observed with increasing adipic acid concentration in the solution.

According to Facchini et al. (1999) surface tension lowering of atmospheric water
samples can be described by the Szyszkowski-Langmuir equation:

σ = σw(T ) − aT ln(1 + bC) (6)5

where C is the concentration of soluble carbon given in moles of carbon per kg of
water. Applying Eq. (6) to multiple mixtures, it is required that the coefficients a and b
are determined from experimental data for all mixing ratios investigated. A modification
of this equation has been tested and proven successful for all mixtures studied herein.

σ = σw(T ) −
∑
i

χiaiT ln(1 + biC) (7)
10

Equation (7) allows calculation of the surface tension of mixtures at the temperature T
on the basis of the coefficients ai , bi for the pure compounds fulfilling Eq. (6) and χi ,
the carbon content of compound i (Ci in moles of carbon per kg of water) in respect to
the total soluble carbon C in solution:

χi =
Ci

C
(8)15

Recently Kiss et al. (2004) have shown that high concentrations of inorganic salts can
enhance surface tension lowering of HULIS. Due low inorganic salt concentrations of
the here investigated mixtures this effect was assumed to be negligible.

Values for ai and bi of pure adipic acid were derived by fitting Eq. (6) to data points
given by Shulman et al. (1996) (Table 1). Fitting coefficients for pure succinic acid are20

taken from Svenningsson et al. (2004)1.

1Svenningsson, B., Rissler, J., Swietlicki, E., Mircea, M., Bilde, M., Facchini, M. C., Decesari,
S., Fuzzi, S., Zhou, J., Mønster, J., and Rosenørn, T.: Hygroscopic Growth and Critical Super-
saturations for Mixed Aerosol Particles of Inorganic and Organic Compounds of Atmospheric
Relevance, to be submitted, 2004.
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Predicting surface tensions for the experimentally investigated solutions applying this
approach leads to a good agreement (Fig. 5, R2=0.956) in the here considered temper-
ature (273 K≤T≤306 K) and concentration range (0.25 mol kg−1≤[C]≤3.06 mol kg−1). In
general, mixtures close to the solubility limit were difficult to measure due to beginning
precipitation. The precipitated compounds were resolvated by heating the solution, fol-5

lowed by cooling and immediate surface tension measurement. This procedure might
explain the deviation from the 1:1 line in Fig. 5 for low surface tensions.

More work is needed to show if Eq. (7) is applicable for other organic compounds
and for higher concentration of inorganic material.

4.2. Cloud droplet activation10

Critical supersaturations for initially dry particles were in the range between 1.3%
(60 nm, highest share of slightly soluble organics) and 0.16% (110 nm, lowest share
of slightly soluble organics, Fig. 6) For solution droplets the critical supersaturation was
in general lower and the difference between the mixtures was not as strong. The exper-
imental values range between about 1% supersaturation (40 nm) and 0.18% (130 nm).15

To activate the initially dry particles here investigated the critical supersaturation has
to be considerately higher than for e.g. pure sodium chloride particles of the same size.
In comparison with a pure salt particle of 60 nm, which requires a supersaturation of
0.22% to activate, the critical supersaturation has to be 6×, 4× and 2× as high for the
studied initially dry particles, respectively (in order of decreasing share of adipic acid20

in the particle).
The mixed particles exhibit a significant difference in required supersaturation be-

tween initial dry particles (when a solid core is present) and solution droplets and the
difference gets stronger with increasing mass fraction of the less soluble organic acid.
The solution droplets, obtained via the wet set-up (Fig. 2b), do not have to overcome25

the above described solubility barriers and can therefore easier activate than the dry
particles.

The experimentally determined critical supersaturation values (Fig. 6: Sc,expdry/wet)
7472
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were on one hand compared to theoretical values obtained by neglecting the surface
tension lowering (Fig. 6: Sc,theodry/wet,σw(T )) and on the other hand to a Köhler theory
applying the solutions surface tension calculated at activation via the parametrization
explained above (Fig. 6: Sc,theodry/wet,σ(T, C)). Both theories take limited solubility
into account.5

For wet particles measured values and theory taking the parameterized surface ten-
sion of the solution into account agree very well for all mixture types. In case of dry
particles another effect seems to dominate the lowering of surface tension and the
particles activate at a higher critical supersaturation than predicted.

However, in mixtures with a high share of adipic acid the difference between the10

theories applying more and less realistic surface tensions pales in comparison with the
difference between the wet and dry activation state. E.g. for a 60 nm particle consisting
of 93% adipic acid, 5% succinic acid, 2% sodium chloride the deviation between the
difference surface tension approaches is 18% and 13% for a dry and wet particle,
respectively, while there is a 43% discrepancy between initial dry and wet particles. An15

equal sized particle containing 5% adipic acid, 93% succinic acid, 2% sodium chloride
activates at the same supersaturation in wet and dry state, whereas the difference in
surface tension accounts for 3% difference in critical supersaturation.

5. Conclusions

Surface tensions of mixtures of two slightly soluble organic acids and an inorganic salt20

were measured and parameterized as a function of carbon content of the individual
acids and temperature. It was found that the actual surface tension of the droplet at
activation is dependent on the mole fraction of both acids.

Including surface tension lowering in Köhler theory taking limited solubility into ac-
count describes the activation behavior of the solution droplets well, but when a solid25

core is present theory underestimates critical supersaturation.
Even more crucial than surface tension for the here studied mixtures is the phase
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state of the particles. It was shown above that dry particles need much higher su-
persaturation to activate than their wet solution droplet counterpart. Knowledge of the
phase state is therefore crucial otherwise an error in critical supersaturation of more
than 50% can be made and thereby in predicting the CCN number.

Acknowledgements. This work is supported by the Swiss National Science Foundation, the5

Danish Natural Science Research Council and the Nordic Center of Excellence, Research Unit
BACCI.
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Table 1. Coefficients ai and bi of pure adipic acid and succinic acid derived by fitting Eq. (6) to
N data points.

compound N ai bi

succinic acid 6 0.0264 0.286
adipic acid 4 0.0106 11.836
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Table A1. Mass of adipic acid (aa), succinic acid (sa), sodium chloride (NaCl) and water in
each individual solution used for surface tension measurements. Concentrations correspond
roughly to the point of activation of initially dry particles at different dry diameters d0.

d0 maa msa mNaCl mwater
nm g g g g

93% aa, 5% sa, 2% NaCl

100 2.257 0.674 0.271 96.954
50 2.016 1.337 0.535 96.129

80% aa, 18% sa, 2% NaC

100 0.770 0.175 0.019 99.038
50 2.192 2.393 0.264 95.305

5% aa, 93% sa, 2% NaCl

100 0.036 0.674 0.015 99.294
50 0.106 1.860 0.040 98.005
40 1.742 6.135 0.947 91.219
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Figures

Fig. 1. Köhler curves accounting for limited solubility for initially dry particles with a diameter

of 90 nm of ternary mixtures of adipic and succinic acid and sodium chloride. For comparison the

curves for pure adipic and succinic acid are also given.
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Fig. 1. Köhler curves accounting for limited solubility for initially dry particles with a diameter of
90 nm of ternary mixtures of adipic and succinic acid and sodium chloride. For comparison the
curves for pure adipic and succinic acid are also given.
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In (b) the grey highlighted lines show the pathway of the wet kept particles.
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Fig. 2. Experimental setup of CCNC measurements for (a) initially dry particles and (b) solution
droplets. In (b) the grey highlighted lines show the pathway of the wet kept particles.
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Fig. 3. Example of activation measurements for ternary mixtures of adipic and succinic acid at a dry

particle diameterd0 = 90nm. N is the number of scans included in the average and the bars give the

standard deviation of the measurements.
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Fig. 3. Example of activation measurements for ternary mixtures of adipic and succinic acid at
a dry particle diameter d0=90 nm. N is the number of scans included in the average and the
bars give the standard deviation of the measurements.
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Fig. 4. Experimentally determined surface tensions of ternary mixtures of adipic and succinic acid

including NaCl in water. Solution concentrations corresponding roughly to the concentration at

activation for initially dry particles with diameters of 40, 50 and 100nm, respectively. Error bars

represent a combined error of: relative error from the instrumentation (±0.3%), uncertainty in tem-

perature controlling system (±0.3 K),±0.3% of the mass fraction and standard deviation from fit

(±0.3%).
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Fig. 4. Experimentally determined surface tensions of ternary mixtures of adipic and succinic
acid including NaCl in water. Solution concentrations corresponding roughly to the concentra-
tion at activation for initially dry particles with diameters of 40, 50 and 100 nm, respectively.
Error bars represent a combined error of: relative error from the instrumentation (±0.3%), un-
certainty in temperature controlling system (±0.3 K), ±0.3% of the mass fraction and standard
deviation from fit (±0.3%). 7483
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Fig. 5. Predicted surface tensions of mixtures containing dicarboxylic acids and sodium chloride us-

ing eq. 7 versus experimental derived surface tensions in a temperature range of 273K≤ T ≤306K

and a total soluble carbon concentration in water of 0.25mol kg−1≤ [C] ≤ 3.06mol kg−1.
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Fig. 5. Predicted surface tensions of mixtures containing dicarboxylic acids and
sodium chloride using Eq. (7) versus experimental derived surface tensions in a tem-
perature range of 273 K≤T≤306 K and a total soluble carbon concentration in water of
0.25 mol kg−1≤[C]≤3.06 mol kg−1.
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Fig. 6. Comparison of critical supersaturation as a function of particle size for initial dry (solid

lines) and wet (dashed lines) particles of ternary mixtures of adipic acid, succinic acid and sodium

chloride. Lines were obtained from modified Köhler theory atT = 298K, symbols are experimental

results. The experimental uncertainty was calculated based on supersaturation calibration data.
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Fig. 6. Comparison of critical supersaturation as a function of particle size for initial dry (solid
lines) and wet (dashed lines) particles of ternary mixtures of adipic acid, succinic acid and
sodium chloride. Lines were obtained from modified Köhler theory at T=298 K, symbols are
experimental results. The experimental uncertainty was calculated based on supersaturation
calibration data.
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